Yichi Zhang

Logo

View the Project on GitHub YichiZhang2024/portfolio

Research Scientist

Technical skills: R, Python, SQL, Mplus, Stata, SPSS

Education

Work Experience

Researcher @American Institutes for Research

Publication

  1. Lai, M. H. C., Zhang, Y., Ozcan, M., Tse, W. W.-Y., & Miles, A. (2025). fMACS: Generalizing dMACS effect size for measurement noninvariance with multiple groups and multiple grouping variables. Structural Equation Modeling: A Multidisciplinary Journal. Advance online publication. https://doi.org/10.1080/10705511.2025.2484812

  2. Lai, M. H. C., Zhang, Y., & Ji, F. (2024). Adjusting for measurement error in cluster means in multilevel modeling: Two numerically stable alternatives to latent-mean centering. Multivariate Behavioral Research. Advance online publication. https://doi.org/10.1080/00273171.2024.2307034

  3. Zhang, Y., & Lai, M. H. C. (2024). Evaluating two small-sample corrections for fixed-effects standard errors and inferences in multilevel models with heteroscedastic, unbalanced, clustered data. Behavior Research Methods. Advance online publication. https://doi.org/10.3758/s13428-023-02325-9

  4. Ozturk, E. D., Zhang, Y., Lai, M. H. C., Sakamoto, M. S., Chanfreau-Coffinierd, C., & Merritt, V.C. (2023). Measurement invariance of the Neurobehavioral Symptom Inventory (NSI) in male and female Million Veteran Program (MVP) enrollees completing the Comprehensive Traumatic Brain Injury Evaluation (CTBIE). Assessment. Advance online publication. https://doi.org/10.1177/10731911231198214

  5. Tse, W. W., Lai, M. H. C., & Zhang, Y. (2023). Does strict invariance matter? Valid group mean comparisons with ordered-categorical items. Behavior Research Methods. Advance online publication. https://doi.org/10.3758/s13428-023-02247-6

  6. Zhang, Y., Kim, Y., & Zheng, X. (2023). Investigating measurement invariance in NAEP student questionnaire index items. [AIR-NAEP Working Paper]. Washington, DC: American Institutes for Research.

  7. Zhang, Y., Lai, M. H. C., & Palardy, G. J. (2023). A Bayesian region of measurement equivalence (ROME) approach for establishing measurement invariance. Psychological Methods, 28(4), 993–1004. https://doi.org/10.1037/met0000455

  8. Lai, M. H. C., & Zhang, Y. (2022). Classification accuracy of multidimensional tests: Quantifying the impact of noninvariance. Structural Equation Modeling, 29(4), 620–629. https://doi.org/10.1080/10705511.2021.1977936